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A continuous random network model of amorphous silicon, subject to periodic

boundary conditions, is partitioned into cells bounded by irreducible rings. An

algorithm has been developed to ®nd the cells and the rings that bound them. A

thread can be imagined to pass through odd rings (rings containing an odd

number of atoms) without passing through even rings. Such a thread is an

algorithmic realization of an odd line, which is the only topological defect in

glass or amorphous condensed matter. The topological entropy of disorder

associated with these odd lines is found to be approximately 80% of the value

for an ideal tetrahedrally bonded random network of atoms for which the rings

that bound the cells are statistically independent.

1. Introduction

Amorphous silicon is well described as a continuous random

network of Si atoms. Each Si atom is covalently bonded to four

nearest neighbors at a distance that varies by only a few

percent from the nearest-neighbor distance of 3.5 AÊ that is

found in the diamond cubic structure of crystalline Si, and the

angular deviation from perfect tetrahedral bonding of 109.47�

is of the order of 10�.

A crystalline structure has characteristic topological defects

that determine its physical behavior. Besides point defects

such as vacancies and interstitials, or walls like a grain

boundary, there exist extended line defects, dislocations and

disclinations (at least in nematic liquid crystals), resulting from

breaking translational or rotational symmetry, respectively. In

amorphous materials, such as glass or amorphous Si, only one

line defect survives the breaking of translational and rota-

tional symmetries: the wedge disclination line (Rivier, 1979),

which is commonly known simply as an odd line. Odd lines are

the only topological defects in a fully tetrahedrally coordi-

nated continuous random network of Si since there are no

dangling bonds etc.

Fig. 1 pictures a 216-atom random network model of

amorphous Si subject to periodic boundary conditions. It is

one of many computer-generated models obtained by using

the method of simulated annealing. This one was chosen

because it was the ®rst (Wooten et al., 1985) and the smallest,

the small size making it a simpler case to deal with in a ®rst

effort at solving the `odd-line problem'. The model was

constructed by randomizing and annealing a supercell of Si

that was initially in the diamond cubic structure. (Wooten et

al., 1985, Wooten & Weaire, 1987, 1995). In the crystal, there

are rings of covalently bonded atoms. Each irreducible ring

(roughly speaking, each shortest ring) consists of exactly six

atoms. (A precise de®nition of irreducible rings will be given

in x2.1.) The process of randomization introduces ®vefold and

sevenfold rings into the structure. Eventually, even larger rings

are introduced. The model is subsequently relaxed by simu-

lated annealing. The result is a model in remarkably good

agreement with experiment as determined by the two-body

correlation function found from X-ray scattering and,

compared to other models, it gives the best agreement with

three-body correlations (Filipponi et al., 1989) found from

X-ray absorption. It is fully randomized as indicated by ring

statistics but the structure factor jS�q�j2 associated with those

reciprocal-lattice vectors labeled (111) for the diamond cubic

structure is outside the standard deviation for a `thoroughly'
Figure 1
A 216-atom model of amorphous silicon.



randomized model (Wooten & Weaire, 1986). Nonetheless,

because of its agreement with experimentally measured

properties, its frequent use in calculations of the properties of

amorphous silicon (see references in Wooten & Weaire, 1995)

and, especially for the reasons of size cited above, it was

chosen as a test case for developing an algorithm for ®nding

odd lines.

One can pass a thread through the odd rings of a network

such that each odd ring is threaded once and only once and

such that the thread returns to the starting point to complete a

loop, or ends at a surface in a ®nite system, or repeats itself in a

lattice subject to periodic boundary conditions without passing

through any even rings. This process can be continued until

every odd ring has been threaded once and only once. These

threads are an algorithmic realization of the odd lines of the

topologist or the theoretical condensed-matter physicsist.

Fig. 2 shows an example of odd lines threading the odd rings

for the model of Fig. 1. Finding them and relating them to the

topological entropy of disorder in a model of amorphous

silicon is the subject of this paper.

2. Cells, corners, odd lines and rings

A cell can be de®ned for a periodic lattice as either the

traditional unit cell of a Bravais lattice or as the Wigner±Seitz

(Voronoi) polyhedron constructed about each atom. The

notion of a cell is unambiguous even for a liquid of like atoms

or for an amorphous solid such as a-Si, where the construction

of Voronoi polyhedra is unique.

Although the Voronoi cell is the traditional choice for

amorphous materials, there is another choice for de®ning cells

in a covalent random network, where one can think in terms of

a ball-and-stick model. It is to choose as cells those regions of

space bounded by irreducible rings of atoms as illustrated in

Fig. 3. This is the choice that will be used here. It will have to

be developed in greater detail to deal with the complexity

introduced by rings that overlap and which are not planar. It is

this complexity that complicates the process of de®ning and

®nding cells, but the simpler description suf®ces for now.

The cell in Fig. 3 is a topological `tent', with a six-ring base

(atoms 167, 169, 170, 171, 166, 152), and four odd rings

meeting three by three at an apex, one at each end of the edge

173±190. The point P in Fig. 3 is the centroid of the cell. Four

lines connect P to the centroids (A, B, C and D) of each of the

four odd rings. These four odd rings together with the sixfold

ring on the bottom of the cell are the boundaries that de®ne

the cell. All cells are necessarily bounded by an even number

of odd rings (four in this case), which is the basis for the

theorem (Rivier, 1979): uninterrupted lines closing as loops or

terminating at the surface of the material or repeating them-

selves in a periodic lattice can be threaded through all odd faces

avoiding even faces. These odd lines are the topological

defects in a liquid, glass or amorphous solid.

2.1. Irreducible rings

Our common-sense de®nition of a ring is a set of atoms (or

vertices) such that, starting on any one of the atoms one can

progress along a bond (edge) to an adjacent atom and from

there to another atom and so forth until after n steps one

returns to the starting atom. That de®nes an n-fold ring. There

is no limit to the size of a ring de®ned that way. What we want

are rings analogous to smallest rings, which we shall call irre-

ducible rings. For this we need to re®ne our understanding of

an irreducible ring with a precise de®nition.

De®nition. A ring is irreducible if there is no shorter path

between any two vertices on the ring than a path on the ring

itself.
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Figure 2
Odd lines in the amorphous silicon model of Fig. 1.

Figure 3
A cell belonging to the model of Fig. 1 with four odd rings: A, B, C, D.
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Ring A in Fig. 3 consists of atoms 25, 152, 167, 187 and 173.

(The atom numbers correspond to the numbering in the

original crystalline supercell before randomization and

annealing.) Ring B consists of atoms 190, 169, 167, 187 and

173. Is the sixfold ring consisting of atoms 25, 152, 167, 169, 190

and 173 irreducible, thereby constituting, together with rings

A and B, a smaller cell bounded by two ®vefold rings and a

sixfold ring? No. Fig. 4 shows the topological arrangement of

these rings projected onto two dimensions, where it is clear

that the (outer) sixfold ring is reducible because the path from

atom 173 to atom 167 via atom 187 is topologically shorter

(two edges) than either path (three edges) between these two

atoms that lies on the sixfold ring itself.

Henceforth, any reference to a ring means an irreducible

ring unless otherwise stated and cells are bounded by irre-

ducible rings.

Given a model for which the atomic coordinates and

neighbors are known, one needs to ®rst ®nd all the irreducible

rings.

The present model has 95 irreducible ®vefold rings, 166

sixfold rings, 118 sevenfold rings, 32 eightfold rings and 4

ninefold rings. (All irreducible rings have been counted, even

if they overlap. See discussion of Fig. 7 in x2.3.)

2.2. Corners

Cells are built from corners. A corner is de®ned by three

rings that share a common atom (vertex) and such that each

pair of rings shares a common bond (edge). Finding and

identifying cells, and their bounding rings, by their corners is

the central idea of this paper. It is the basis for ®nding the odd

lines needed to determine the combinatorial topological

entropy.

Fig. 5 shows one corner (shaded) that belongs to the

example cell of Fig. 3. The vertex of the corner is atom 173.

The triangle (187, 173, 25) belongs to ring A. The triangle

(187, 173, 190), which is hidden, belongs to ring B. These two

rings share a bond (173±187). The triangle (25, 173, 190)

belongs to the sevenfold ring C (atoms 25, 173, 190, 176, 171,

166, 152). It shares a bond (25±173) with ring A and a bond

(173±190) with ring B. Thus, rings A, B and C form a corner as

de®ned above.

Fig. 6 shows a second corner belonging to the example cell

of Fig. 3. This corner is formed from rings B, C and D.

Two corners that share two rings in common belong to the

same cell. (Consider two adjacent corners of a cube for easy

visualization. But keep in mind that cubic cells bounded by

planar polygons are much simpler than the cells of a random

lattice.)

The two corners emphasized in Figs. 5 and 6 have two rings

in common (B and C) and thus belong to the same cell. Thus

the second step in ®nding cells is to ®nd all pairs of corners

with two rings in common and join them to form a dihedral

wedge. Next, join all pairs of dihedral wedges with two rings in

common, and continue this process until ®nally a complete cell

has been found.

We have ignored this: At least two rings belong to each

triangle. For example, consider the triangle (187, 173, 25)

belonging to ring A. Atom 187 is bonded to two other atoms,

not shown in Fig. 3. Call one of them 1870. Similarly, atom 25 is

bonded to another atom 250. If the ring (. . . 1870, 187, 173, 25,

250; . . .) is irreducible, the triangle (187, 173, 25) belongs to at

least one ring other than ring A and the corner belongs to at

Figure 4
An (outer) sixfold ring from Fig. 3 is reducible to two ®vefold rings.

Figure 5
A corner (shown shaded) of the cell of Fig. 3. See Fig. 3 for a better
perspective of the line segments from point P.

Figure 6
A second corner (shown shaded) of the cell of Fig. 3. See Fig. 3 for a
better perspective of the line segments from point P.



least eight different combinations of rings. How do we choose

the correct combination?

An approximation to the centroid of the corner is found by

taking the vector sum of the three bonds belonging to the

corner, using the vertex atom as the origin. Then, those three

rings having centroids closest to the centroid of the corner are

selected. (Taking account of periodic boundary conditions in

this process requires close attention to detail.) As a check on

these choices, it is required that the pairs of rings have at least

one atom in common in addition to those belonging to the

corner.

2.3. Pseudo-rings

The procedure to this point is conceptually simple because

we have ignored the complexities and ambiguities introduced

by overlapping rings. To resolve these ambiguities, it is

convenient to introduce the concept of pseudo-rings.

Fig. 7 shows two overlapping sevenfold rings and a sixfold

ring. These three rings are irreducible but cause problems in

de®ning a cell because of the overlap. The dif®culties can be

removed by de®ning a pseudo-bond (dashed line in Fig. 8),

which creates a ®vefold pseudo-ring as the overlap region of

the two sevenfold rings. The ®vefold pseudo-ring is shown in

Fig. 8 as the shaded region. In the process, two fourfold

pseudo-rings are created by dividing the sixfold ring.

The cluster of rings from Fig. 8 is shown again embedded in

the structure of Fig. 9.

There appear to be two cells in Fig. 9, one bounded above

by the pseudo ®vefold ring and the other bounded below by

the pseudo ®vefold ring. The role of the pseudo-rings is

twofold: First, they clarify the boundaries more clearly. But,

what is more important and subtle, is that they prevent the

merging of cells. Note that if pseudo-rings were not used the

cell below would be bounded partially by both of the two

overlapping sevenfold rings, as would the cell above, so that

one should merge the cells since they would seem to have two

rings in common. This ambiguity is removed by de®ning the

single ®vefold pseudo-ring to replace the two sevenfold rings.

However, the two cells would then still have two rings in

common (the pseudo ®vefold and the sixfold) and the cells

would still merge. Thus it is also necessary to replace the

sixfold ring by two pseudo fourfold rings.

This use of pseudo-rings is fraught with opportunities to

miss when considering possible overlaps. Sevenfold rings can

overlap with four atoms in common, which requires introdu-

cing a pseudo fourfold ring and two pseudo ®vefold rings.

Introducing pseudo-rings must be extended to overlapping

eightfold and ninefold rings in this model. In larger models

(4096 atoms), even tenfold and elevenfold rings exist. There

are numerous combinations of overlapping rings to be dealt

with.

Fig. 9 can be deceptive. One easily recognizes a sevenfold

ring on top of the cluster. This sevenfold ring is surrounded by

a pseudo fourfold ring, two ®vefold rings and a sixfold ring.

These rings appear to be bounded below by the (shaded)

pseudo ®vefold ring. Thus there may appear to be a cell

bounded by four odd rings and two even rings. Actually, there

are two cells in the top of the cluster lying above the shaded

pseudo ®vefold ring. The sixfold ring overlaps two sevenfold

rings in a three-ring cluster topologically equivalent to the

three rings of Fig. 7, but here the two sevenfold rings are

suf®ciently geometrically distorted as to be dif®cult to recog-

nize. One must create another pseudo ®vefold ring from the

overlap region of these two sevenfold rings to separate the two

cells in the top of the cluster. It is easy to ®nd the two

sevenfold rings with a computer program, but they are often

dif®cult to recognize by visual inspection. Of course, ®nding

eight-, nine-, ten-, eleven- and higher-fold rings is impossibly

complicated without a computer program.

Finally, one must consider the case for which the ring

identi®ed as sixfold in Fig. 7 is reducible because of its

connections to the surrounding matrix in which the cluster is
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Figure 7
Two overlapping sevenfold rings and a sixfold ring.

Figure 8
A pseudo ®vefold ring created with a pseudo-bond.

Figure 9
The rings of Fig. 8 embedded in an Si cluster.
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embedded. This is a rare occurrence but, if the sixfold ring is

reducible, one must not form pseudo-rings from the over-

lapping sevenfold rings. To do so would implicitly promote a

reducible sixfold ring to the status of an irreducible ring when

it is converted (improperly) into two fourfold pseudo-rings in

the process of creating a ®vefold pseudo-ring from the over-

lapping sevenfold rings.

2.4. The Rivier network

The segments of odd lines shown in Fig. 2, for example,

connect to the segments of odd lines in adjoining cells, thus

making up a network called the Rivier network. For the

present model, it consists of 144 nodes at the centroids of cells.

Of these 144 cells, 96 are bounded by two odd rings, 44 are

bounded by four odd rings and six cells are bounded by six

odd rings.

The Rivier network can be decomposed into loops and

irreducible loops in the same way that the covalent network of

Si atoms can be decomposed into rings and irreducible rings.

The statistics for these loops are given in Table 1 for loops

from length 3 to length 13. Of course, in addition to closed

loops, there are lines that extend completely across the

supercell that constitutes the model and thus correspond to

odd lines that repeat themselves because of the periodicity of

the model.

Of the irreducible loops, ®ve are minimal (three threefold

and two fourfold loops) in the sense that the rings through

which each of these loops pass all share a common bond.

Thus, if one visualizes the loop as a thread, the thread can be

tightened to be of arbirarily short length looping around the

common bond.

A picture of the Rivier network is not helpful. The large

number of small fragments of the Rivier network that connect

to neighboring supercells make for a very confusing picture.

The best visualization was obtained by making a choice of

loops to display. The choice for Fig. 2 was made as follows:

Two of the three minimal threefold loops and the two minimal

fourfold loops were chosen. (One of the threefold loops was

necessarily eliminated by the choice of the ®rst two threefold

loops.) Then successively larger loops or repeating lines were

chosen more or less at random. The choices become more and

more restricted. If, for example, one chooses a loop containing

the line segment from face A to face C in Fig. 3, the other loop

extending through the cell necessarily consists of the line

segments from face B to face D. The choice of Fig. 2 is one out

of � 5 � 1025 choices, as we shall ®nd in x3.

There are 15 loops or periodically repeated lines shown in

Fig. 2. The number of odd rings through which each of the

closed loops (or the periodic part of a line) passes are: 3, 3, 4, 4,

4, 6, 9, 9, 10, 12, 14, 17, 24, 32, 45.

In order to clearly separate the chosen loops, they are

constructed such that the odd line segments in the loop go

from one ring centroid to the next ring centroid without

passing through the centroid of the cell. This makes a clearer

picture than the Rivier network with all odd lines passing

through, and connected at, the cell centroids. In the case of

repeating lines, portions of the odd line that extend into

neighboring cells are shown without translating them back

into the supercell of Fig. 2.

3. The topological entropy of disorder

The full topological entropy of the odd-line defects has been

calculated (Rivier & Duffy, 1982) under the assumption that

every face (ring) can be odd or even, apart from the continuity

restraint, which is satis®ed by the requirement that there be an

even number of odd faces per cell, for which there is a simple

proof (Rivier, 1979). For the case of a monoatomic tetra-

hedrally bonded substance such as covalent liquid Si, the

result is

St � NkB ln 2 � R ln 2

� 5:76 J Kÿ1 moleÿ1:
�1�

This is the ideal (maximum) entropy for the case in which the

parity (odd or even) of the rings is statistically independent, an

assumption unlikely to be valid in an actual network. Here, we

are using St as the upper limit for amorphous silicon, which is a

tetrahedrally coordinated covalent random network, unlike

liquid Si, which is metallic with an atomic connectivity of 6

(locally, a simple cubic con®guration).

The combinatorial topological entropy of the model, Scomb,

involving the vertices of the Rivier network, is given by

Scomb � kB ln 
OddLines; �2�

where 
OddLines is the number of distinguishable con®gura-

tions of the odd lines. The number of possible con®gurations

for a cell is


cell � �nÿ 1�!! � �nÿ 1��nÿ 3��nÿ 5� . . . �1�; �3�

where n is the number of odd rings bounding the cell. Thus, for

example, a cell with four odd rings has three possible ways in

which two lines can pass through the cell and one with six odd

rings has 5 � 3 � 15 possibilities for passing three lines. The

total number of possible odd-line con®gurations for the model

with four odd cells containing six odd rings and 44 cells with

four odd rings is

Table 1
Odd loop statistics.

Loop length Irreducible loops Total loops

3-fold 3 3
4-fold 2 8
5-fold 0 7
6-fold 1 5
7-fold 2 10
8-fold 1 16
9-fold 2 35
10-fold 6 58
11-fold 3 107
12-fold 5 194
13-fold 13 331




OddLines � Q

cells


cell

� �15�4�3�44�1�96

� 4:98 � 1025 for 216 atoms

� 1:39 � 1047 for one mole: �4�
The combinatorial topological entropy arises from lifting the

degeneracy of the Rivier network. 
OddLines is the number of

ways in which one can lift the degeneracy. Fig. 2 shows one of

these con®gurations.

The combinatorial topological entropy of the model (on a

molar basis) is

Scomb � kB ln 
OddLines

� 2:28 J Kÿ1 moleÿ1: �5�
Thus we ®nd that

Scomb � 0:4 St: �6�
Con®gurational entropy, Sconfig, arises from rings that have

been twisted and distorted from their con®guration in the

diamond cubic structure, from edges of the Rivier network

which are `wiggly' and of variable length and because the

loops of the Rivier network also have a ¯uctuating number of

topological edges. One can, in principle, measure the entropy

frozen in the glass at a temperature T1 well below the glass

transition: Just cool the liquid slowly, from T2 through the

glass transition down to T1 (at T2, liquid silicon is metallic with

six nearest neighbors but the entropy can be calculated or

measured by some independent means), measure the speci®c

heat, CP, at each temperature and calculate the integral

RT2

T1

�CP=T� dT � S�T2� ÿ S�T1�: �7�

At very low temperatures, CP is very small and the lower limit

T1 in the integral can be set to zero. Nevertheless, S�T1� � S�0�
remains ®nite, although the experimental value depends on

the rate of cooling. S�0� measures the entropy frozen in the

glass, which is the full topological entropy, Scomb � Sconfig. One

can argue (Rivier, 1987, and private communication) that the

two contributions are roughly equal for a `semi-dilute'

network of loops. [A semi-dilute network of loops is such that

one does not know whether the nearest segment belongs to

the same loop or to any other. For the Rivier network, this

means that the average radius of a loop (the distance between

vertices of the Rivier network) is of the same order as the

wiggliness of individual loops, which appears to be the case in

Fig. 2.] Thus, for a semi-dilute network of loops, the topo-

logical entropy is maximal (since there is only one length

scale), with equal con®gurational and combinatorial contri-

butions.

Sconfig � Scomb: �8�

Since the model has been found to have Scomb � 0:4St, the

total topological entropy for the model is

Stopological � Scomb � Sconfig � 0:8St; �9�

a value that is perhaps surprisingly large in view of the very

rough argument used to estimate Sconfig and of the smallness of

the model. The de®cit, compared to the idealized Rivier±

Duffy calculation, arises from various causes, the most

important being that the model is insuf®ciently randomized

(Wooten & Weaire, 1986), the model is too small and/or the

parities of the faces (rings) are not statistically independent.

If one imagines building a cubic model having free surfaces

without periodic boundary conditions, there are no parity

constraints imposed by the surface. On the other hand, if the

model is to be a supercell such as that of Fig. 1, with periodic

boundary conditions imposed, it is necessary that opposite

sides be joined with little deviation from tetrahedral bonding

or from the average SiÐSi bond length. This imposes

constraints on the topology and geometry of the rings in order

to satisfy the boundary conditions. There is some evidence

that this is indeed a constraint, for the angular deviations from

perfect tetrahedral bonding in models subject to periodic

boundary conditions have been found to be larger in smaller

models than in larger ones. If the cell is small, the boundary

constraints affect a larger fraction of the cell.
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Wooten [Acta Cryst. (2002), A58, 346±351] de®nes cells in

amorphous Si as being bounded by irreducible rings of atoms,

which can be viewed as distorted polygons. These irreducible

rings are, roughly speaking, shortest rings. However, the

de®nition used is incomplete and leads to some large rings

being counted as irreducible when close examination reveals

they are not. In particular, the incomplete de®nition counts

four ninefold rings (out of a total of 1041 ninefold rings) as

being irreducible. Yet a detailed examination reveals that

these four rings bound a set of smaller rings, and are clearly

not irreducible in any meaningful sense of the word. An

extended de®nition has been given [Rivier & Wooten (2003).

MATCH ± Commun. Math. Comput. Chem. 48, 145±153], and

described at length, that removes the dif®culties. It results in a

small increase in entropy, approaching slightly closer to the

ideal. The ®rst paragraph of Wooten (2002) incorrectly states

that the nearest-neighbor distance in Si is 3.5 AÊ , rather than

the correct value of 2.35 AÊ . This misprint has no effect on

anything else.
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